by Bruce Wells | Aug 1, 2025 | Petroleum Technology
A flammable workplace brings danger everywhere.
Whether ignited by accident, natural phenomena, or acts of war, oilfield fires have challenged the petroleum industry since the earliest wells. Catastrophic fires — and technologies needed to fight them — began with the first U.S. well, completed on August 27, 1859, at Oil Creek in northwestern Pennsylvania.
Just six weeks after his discovery, Edwin L. Drake’s well caught fire when driller William “Uncle Billy” Smith inspected the well with an open lamp, igniting seeping natural gas. Flames consumed the cable-tool derrick, engine-pump house, stored oil, and Smith’s nearby shack.

Drake Well Museum exhibits at Oil Creek in Titusville, Pennsylvania, include a replica of the cable-tool derrick and engine house that drilled the first U.S. well in 1859.
Today, visitors to the Drake Well Museum at Titusville tour the latest reconstructed cable-tool derrick and its engine house along Oil Creek, where the former railroad conductor found oil at a depth of 69.5 feet. He revealed a geologic formation later called the Venango sandstone.
Another Drake Well Museum exhibit preserves the Titusville Fire Department’s coal-fired steam pumper (see Oilfield Photographer John Mather). As the new U.S. petroleum industry learned from hard experience, firefighting technologies evolved in northwestern Pennsylvania’s “Valley that Changed the World.”
Hard Lessons
In 1861, an explosion and fire at Henry Rouse’s gushing oil well made national news when he was killed along with 18 workers and onlookers (see Rouseville 1861 Oil Well Fire). In 1977, the Smithsonian American Art Museum acquired landscape artist James Hamilton’s “Burning Oil Well at Night, near Rouseville, Pennsylvania,” painted soon after the fire.
The dangerous operating environment of a cable-tool rig included a spinning bull wheel, a rising and falling heavy wooden beam, a steam boiler, and crowded spaces.

The pounding iron drill bit frequently needed to be withdrawn and hammered sharp using a small, but red-hot forge, often set up just feet from the wellbore.
Lighting striking derricks and oilfield tank farms also would prove challenging.

Preserved by the Smithsonian, “Burning Oil Well at Night, near Rouseville, Pennsylvania,” circa 1861, an oil painting by James Hamilton, Smithsonian American Art Museum, Washington, DC.
Late 19th-century oilfield fire prevention remained rudimentary as exploration moved westward. Safety lamps like one with two spouts, popularly known as the “Yellow Dog” lantern, were not particularly safe. The rapidly growing petroleum industry needed new technologies for preventing fires or putting them out.
As drilling experience grew, refineries responded to skyrocketing public demand for the lamp fuel kerosene. Production from new oilfields in Texas, Kansas, and Oklahoma led to construction of safer storage facilities, but advances in drilling deeper wells brought fresh challenges (see Ending Oil Gushers – BOP).
Firefighting with Cannons
Especially in early oilfields, working in such a flammable workplace could bring danger from everywhere — including the sky. Lightning strikes on wooden storage tanks created flaming cauldrons.

A circa 1915 photo of a cannon — possibly a “Model 1819,” according to The Artilleryman Magazine (Fall 2019, vol. 40, no. 4) — firing solid shot in an attempt to create a hole to drain the burning oil tank. “No one appears to be near the gun, so it may have been fired using fuse or electrically.” Photo courtesy Oklahoma Historical Society.
In the rush to exploit early oilfields, wooden derricks crowded an oil-soaked landscape, leaving workers — and nearby towns — dangerously exposed to an accidental conflagration. Many oil patch community oil museums have retained examples of early smooth-bore cannon used to fight fires.
A Civil-War era field cannon exhibit in Corsicana, Texas, tells the story of a cannon from the Magnolia Petroleum Company tank farm. “It was used to shoot a hole in the bottom of the cypress tanks if lightning struck,” a plaque notes. “The oil would drain into a pit around the tanks and be pumped away.”
Learn more in Oilfield Artillery fights Fires.

Oilfield firefighting using cannons has continued into the 21st century. In May 2020, a well operated by the Irkutsk Oil Company in Russia’s Siberian region ignited a geyser of flaming oil and natural gas. When efforts to control the blowout failed, the Russian Defense Ministry flew in a 1970s anti-tank gun and its Hungarian crew.
From about 200 yards away, the Hungarian artillerymen (Covid-19 masked) repeatedly fired their 100-millimeter, smooth-bore Rapira MT-12 gun at blazing oilfield equipment, “breaking it from the well and allowing crews to seal the well,” according to the Russian Defense Ministry.
In addition to using cannons to fire well fires, other techniques have included smothering them using cranes to lower iron metal caps (see Kansas Gas Well Fire) or detonating an explosive from above to rob the flames of air. Using a wind machine must count among the more unusual methods.
Firefighting with Wind
In 1929, about 400 volunteers took on a raging oilfield fire that had destroyed seven derricks and two oil well “heavy producers” at Santa Fe Springs, California. “Roaring Flames Turn Black Gold To Smoke,” proclaimed a Los Angeles Times headline on June 12.
The Santa Fe Springs Hathaway Ranch and Oil Museum, “a museum of five generations of Hathaway family and Southern California history,” has preserved rare motion picture clips of a propeller-driven “Wind-making Machine” in action — although the wind proved no match for the flames.

“The machine that made the wind that conquered a fire in a Santa Fe Springs oilfield on June 15, 1929,” used a three-bladed airplane propeller and a powerful motor to blow heat away from the men at work fighting the fire. “A track of boards was built for the machine over a lake of oil, mud and water in the ‘hot zone’ of the big fire.” — Hathaway Ranch and Oil Museum, Santa Fe Springs, California.
The fire depicted in the silent film is intense, “so firefighting equipment is appropriately distant from the well head, including the wind machine,” explained museum Curator of Media Archives Terry Hathaway.
“It looks like its use is more or less limited to blowing hot air, smoke and steam (from firefighting water hoses) away from the workers and toward the fire,” he added.

Hathaway explained that the wind machine on the back of a truck probably had no direct influence on the fire itself, due to distance and the ferocity of the high-pressure well blowout, “but it apparently may have made things more tenable for the firefighters by keeping them relatively cool and smoke free.”
A modern version of the 1929 wind-making machine returned in 1991, after Saddam Hussein’s retreating Iraqi army set hundreds of wells ablaze in Kuwait oilfields. Firefighting technologies by then had evolved into using jet engines. MB Drilling Company of Szolnok, Hungary, sent a three-man team with “Big Wind,” a modern version of the 1929 wind-making machine.
Instead of a piston-driven propeller on a vintage truck bed, twin MIG-21 turbojets were mounted in place of the turret on a World War II Soviet T-34 tank. The jet engines generated 700 mph of thrust, which blasted hundreds of gallons of water per second into the flames.

Image from Romanian video of 1991 Kuwaiti oilfields: “Twin MIG-21 turbojets mounted on a World War II era Soviet T-34 tank dubbed ‘Big Wind’ generated 700 mph thrust blasting hundreds of gallons of water per second into the fire.”
The Hungarian team members put out their assigned fires and recapped nine wells in 43 days, according to a 2001 Car and Driver article, “Stilling the Fires of War.”
“Hell Fighters”
Many firefighting teams went to Kuwait following the Persian Gulf War, including Paul “Red” Adair, whose dramatic oilfield feats had been popularized in the 1968 movie “Hellfighters.” Adair and his team extinguished 117 Kuwaiti oil well fires by robbing the flames of oxygen using explosives.
As the Hungarian crew chief of “Big Wind” observed at the time, “Would you really want to walk up to a 2,000-degree flame through burning heat and oil rain carrying explosives?”
A century earlier, Karl T. Kinley did just that. Kinley, a California oil well “shooter” (see Shooters — A History of Fracking) during the early 1900s, learned from first-hand experience that a dynamite explosion could “blow out” a wellhead fire. Kinley’s son, Myron Macy Kinley, established the oilfield service business M.M. Kinley Company after learning from his father’s highly dangerous experiments.

Readers Digest in 1953 declared Myron M. Kinley “the unrivaled world-champion fighter of oil fires.” A TIME article described him as “the indispensable man of the oil industry.”
But with the chance of terrible injuries or death ever present, firefighting success was not without cost. Kinley’s brother Floyd was killed by falling rig debris in 1938 as they fought a runaway well fire near Goliad, Texas.

Myron M. Kinley (at left), Paul “Red Adair (center), and a welder examine a nitroglycerin bomb barrel. Myron Kinley has been called the grandfather of modern oil well fire fighting, according to the Oklahoma Historical Society. Photo by A.Y. Owen courtesy OHS Oklahoma Publishing Company Photography Collection.
Kinley, a mentor of “Red” Adair, developed technologies at M.M. Kinley Company that inspired other firefighting experts, including Joe R. Bowden Sr., who founded Wild Well Control in 1975 to provide emergency response, safety training, and relief well engineering.
After they had worked for the Red Adair Service and Marine Company, Asger “Boots” Hansen and “Coots” Mathews opened an office in Houston in 1978 for what could become Boots & Coots International Well Control (today a Halliburton Company).
Other oilfield pioneers include Cudd Pressure Control — today, Cudd Well Control, founded by Bobby Joe Cudd, another pioneer of emergency well control techniques. Cudd established his Woodward, Oklahoma-based company in 1977 with eight employees and a “hydraulic snubbing unit.”
Adair had joined Myron Kinley’s California oilfield service company after serving with a U.S. Army bomb disposal unit during World War II. After starting his own company in 1959, “Red” improved firefighting technologies, developing new tools, equipment, and techniques for “wild well” control.
Adair was 75 years old when he successfully tamed roaring fires in Kuwait’s scorched oilfields. As early as 1962, his Red Adair Company had “put out a Libyan oil well fire that had burned so brightly that astronaut John Glenn could see it from space,” the Los Angeles Times reported.
USSR Firefighting Nukes
Between 1966 and 1981, the Union of Soviet Socialist Republics snuffed out runaway fires at natural gas wells using subsurface nuclear detonations. The experiments, part of the broader “Program No. 7 – Nuclear Explosions for the National Economy,” imitated a U.S. initiative, “Plowshare,” seeking peaceful uses of nuclear bombs (see Project Gasbuggy tests Nuclear “Fracking”).
According to the Lawrence Livermore National Laboratory, USSR scientists code-named five secret attempts: Urta-Bulak, Pamuk, Crater, Fakel, and Pyrite.
The first experimental detonation, Urta-Bulak in 1966, came after three years and failed conventional attempts to extinguish a blazing natural gas well in Southern Uzbekistan. Scientists positioned a special 30-kiloton package within 300 feet of the borehole by slant drilling.
Detonated in clay strata at a depth of 4,921 feet, the nuclear explosion’s shock wave sealed the well within 23 seconds, staunching the daily waste of 423 million cubic feet of natural gas, reported Russian television.

Video image showing a USSR nuclear device being lowered into well for a detonation shockwave to extinguish a runaway oilfield fire. A Russian newspaper reported a 1966 nuclear blast used to put out a natural gas well fire in Uzbekistan.
In 1968, the Pamuk well explosion used a larger, 47-kiloton nuclear device that measured 9.5 inches by 10 feet. Two years of uncontrolled natural gas and a heavily saturated surrounding landscape yielded to the nuclear detonation at a depth of 8,000 feet. The runaway gas well died out seven days later.
Twice in 1972, USSR scientists used lower-yield detonations to extinguish massive fires. The smallest of the nuclear firefighting devices (3.8 kiloton) on July 7 squelched a runaway gas well fire in Ukraine, about 12 miles north of Krasnograd.
The USSR program’s only recorded failure came in 1981 with the last Soviet use of firefighting nukes. On May 5, a nuclear device failed to shut down a 56 million cubic feet per day out-of-control natural gas well. The code-named Pyrite device had been positioned proximate to the well at a depth of 4,957 feet.

The 37.6-kiloton detonation in a sandstone-clay formation failed to seal the gas well, according to the USSR Ministry of Defense, which provided little more information.
By the 1950s, America was considering how to use nuclear weapons for constructive purposes — “Atoms for Peace.” In December 1961, the Plowshare Program began examining the feasibility of various projects, including the Project Gasbuggy tests to improve natural gas production. Those tests worked, but yielded radioactive gas.
Neither the Project Plowshare nor the Soviet Union’s Program No. 7 produced desirable results. With or without nukes, oilfield work then and now remains among the most dangerous jobs in the world. Safety and prevention methods have improved along with the technologies since the industry’s earliest wells in northwestern Pennsylvania.
_______________________
Recommended Reading: The Birth of the Oil Industry (1936); Trek of the Oil Finders: A History of Exploration for Petroleum (1975); The Prize: The Epic Quest for Oil, Money & Power (1991); Myth, Legend, Reality: Edwin Laurentine Drake and the Early Oil Industry
(2009). Your Amazon purchase benefits the American Oil & Gas Historical Society. As an Amazon Associate, AOGHS earns a commission from qualifying purchases.
_______________________
The American Oil & Gas Historical Society preserves U.S. petroleum history. Please become an annual supporter and help maintain this energy education website and expand historical research. For more information, contact bawells@aoghs.org. Copyright © 2025 Bruce A. Wells.
Citation Information – Article Title: “Exploring Oilfield Firefighting Technologies.” Authors: B.A. Wells and K.L. Wells. Website Name: American Oil & Gas Historical Society. URL: https://aoghs.org/technology/oilfield-firefighting-technologies. Last Updated: August 1, 2025. Original Published Date: January 31, 2022.
by Bruce Wells | Jul 18, 2025 | Energy Education Resources
A geologist tracks down the first references to petroleum.
Petroleum geologist and historian Raymond P. Sorenson has spent much of his professional career writing about the oil and natural gas exploration and production industry.
Among Sorenson’s ongoing projects is documentation of the earliest signs of oil worldwide, including references to hydrocarbons long before the 1859 first U.S. oil well drilled 69.5 feet into the Venango sands of Pennsylvania.
About three centuries earlier, a Spanish expedition in the Gulf of Mexico led by Don Luis de Moscoso landed at the mouth of the Sabine River in the future state of Texas. The New World explorers in 1543 discovered Indians had for centuries utilized natural seeps to waterproof canoes, apply to abrasions, and more.

A Spanish expedition in 1543 used brigantines to explore the coast of the Gulf of Mexico.
Sorenson, retired and living in Tulsa, initially focused his research on geological surveys, reports from other exploring expeditions, and scientific journals. He then progressed to references cited by others, concentrated his efforts on North America and English language sources — the most readily available — but discovered rare sources as well.
Oil in Antiquity to Today
The petroleum geologist’s ongoing work has added more than 740 reference pages (with captured images) of his sources for the earliest signs of hydrocarbons in North America and other parts of the world.
In 2002, Sorenson shared with the American Oil & Gas Historical Society his 59-page bibliography of “Pre-Drake” publications. “For the past few years I have been engaged in a systematic study to document what was known about oil and natural gas prior to the Drake well,” he noted.

“I have an additional list of cited references that I have not yet examined of comparable size,” Sorenson added in a follow-up email to AOGHS. “The majority are in languages other than English, and I suspect that many of them will not be accessible through my library resources (or my linguistic skill set).”
A petroleum historian and consulting geologist based in Tulsa, Oklahoma, Sorenson explained in his email to AOGHS that to aid researchers, he has been using images of every page that contains relevant material, posting the full reference information at the top, and outlining the relevant portion of the text.

An 1835 reference to signs of oil and natural gas in Massachusetts prior to the first commercial U.S. oil well in Pennsylvania. Image courtesy Ray Sorenson.
“So far I have found relevant information in more than 550 publications with over 3,500 net pages, covering at last count 31 states, five Canadian provinces, and many foreign countries on other continents,” Sorenson noted in January. “For several topics, I have created subsets. I expect to continue to build the collection.”
In addition to antiquity references, Sorenson’s research for his “Pre-Drake Literature Collections by Subject” has thus far included:
California, Canada, Central & South America, Early Geologists, Europe, Fiction, Humboldt, Industrial & Laboratory, Initial Reactions, Kentucky, Maps & Figures, Medicinal , Middle East Asia Africa, Midwest, New England, New York, Oil & Gas Wells Pre-Drake, Ohio, West Virginia, Pennsylvania, Religious, Scientific American, Shales that Burn, Southern United States, Taylor R.C., Statistics of Coal, Textbooks, Volcanoes and Earthquakes, David Wells, Annual of Scientific Discovery, and Western United States.

Although many of his discoveries were found in obscure scholarly journals, Sorenson also found petroleum references in popular 19th-century publications. For example, the April 18, 1829, issue of “Niles’ Register” reported a Kentucky salt well driller finding oil.
“We have just conversed with a gentleman from Cumberland county, who informs us that in boring through rocks for salt water, a fountain of petroleum, or volatile oil, was struck, at the depth of 180 feet,” the Baltimore publication noted on page 117.
Sorenson’s Research Gigabytes
A long-time member of the American Association of Petroleum Geologists (AAPG) and the Petroleum History Institute (PHI), Sorenson has made many presentations and published academic papers with both. He submitted to PHI a paper on his history of oil and natural gas production from wells prior to 1859 for the journal Oil-Industry History.
The wells were drilled seeking water or brine, but Sorenson found one that flowed an estimated 2,500 barrels of oil per day in the 1820s.
In 2007, Sorenson adapted many of his contributions to AAPG for its extensive Discovery Series with “First Impressions: Petroleum Geology at the Dawn of the North American Oil Industry.” In January 2013, his “Historic New York Survey Set High Geologic Standards” was published in AAPG Explorer magazine, one of his many contributions to that publication.

Sorenson, who also has assisted with AOGHS articles (see Rocky Beginnings of Petroleum Geology), noted in his email that he has no plans to provide this collection in searchable form on a website, but will work with anyone who is conducting similar research.
Everything in the Sorenson collection is preserved in hard copy and digital (PDF) form, adding up to 11 feet of shelf space — about 27 gigabytes of computer memory.
Sorenson intends to give his full collection of research to the Drake Well Museum and Park in Titusville, at the site where Edwin L. Drake first found oil in the upper Venango sands.
Today, the Oil Region Alliance of Business, Industry and Tourism proclaims that historic part of northwestern Pennsylvania, “The Valley that Changed the World.”
For more information about Ray Sorenson’s on-going oil history projects and resources, post a comment below.
_______________________________
1859 Pennsylvania Well
The beginning of the science of petroleum geology might be traced to 1859 when a new industry began in western Pennsylvania. An oil well drilled in 1859 by former railroad conductor Edwin L. Drake along Oil Creek at Titusville sought oil for making kerosene, a new lamp fuel at the time made from coal.
Slowed by delays in receiving funds for what locals called “Drake’s Folly” and drilling with a steam-powered cable-tool rig, it took Drake more than a year to find oil at a depth of 69.5 feet. He also made his own innovations along the way, including adding a 10-foot cast iron pipe to the bore hole — a first.
To the relief of company founder George Bissell and investors in the Seneca Oil Company of New Haven, Connecticut, Drake completed the first U.S. oil well drilled specifically for oil. The August 27, 1859, discovery came in a geologic formation that would be called the Venango sands.
_______________________
Recommended Reading: Trek of the Oil Finders: A History of Exploration for Petroleum (1975); The Birth of the Oil Industry (1936); The Prize: The Epic Quest for Oil, Money & Power
(2008); Myth, Legend, Reality: Edwin Laurentine Drake and the Early Oil Industry
(2009). Your Amazon purchase benefits the American Oil & Gas Historical Society. As an Amazon Associate, AOGHS earns a commission from qualifying purchases.
_______________________
The American Oil & Gas Historical Society (AOGHS) preserves U.S. petroleum history. Please become an AOGHS annual supporter and help maintain this energy education website and expand historical research. For more information, contact bawells@aoghs.org. © 2025 Bruce A. Wells.
Citation Information – Article Title: “Sorenson Oil History Project.” Authors: B.A. Wells and K.L. Wells. Website Name: American Oil & Gas Historical Society. URL: https://aoghs.org/energy-education-resources/exploring-the-earliest-signs-of-oil. Last Updated: July 18, 2025. Original Published Date: August 5, 2020.
by Bruce Wells | Jun 5, 2025 | Petroleum Technology
Oilfield production technologies began in Pennsylvania with an economical way to pump multiple wells.
In the earliest days of the petroleum industry, which began with an 1859 oil discovery in Pennsylvania, production technologies used steam power and a walking beam pump system that evolved into ways for economically producing oil from multiple wells.
Just as drilling technologies evolved from spring poles to steam-powered cable tools to modern rotary rigs, oilfield production also improved.

This image of a circa 1909 double eccentric power wheel manufactured by the Titusville (Pennsylvania) Iron Works is just one example of what can be discovered online at public domain resources. Photo courtesy Library of Congress Prints and Photographs Collections.
In the early days of the industry, oil production technology used steam power and a wooden walking beam. A steam engine at each well raised and lowered one end of the beam. An oil production technique perfected in Pennsylvania used central power for pumping low-production wells to economically recover oil.
Eccentric Wheels
A Library of Congress (LOC) photograph from 1909 shows a “double eccentric power wheel,” part of an innovative centralized power system. The oilfield technology from a South Penn Oil Company (the future Pennzoil) lease between the towns of Warren and Bradford, Pennsylvania.
The LOC photograph preserves the oilfield technology that used the two wheels’ elliptical rotation for simultaneously pumping multiple oil wells. The wheels’ elliptical rotation simultaneously pumped eleven remote wells. This central pump unit operated in the Morris Run oilfield, discovered in 1883. It was manufactured at the Titusville Iron Works.

Many oilfield history resources can be found in the Library of Congress Digital Collections and the related images of petroleum history photography. The development of centralized pumping systems — eccentric wheels and jerk lines — often are preserved in high-resolution files.
The Morris Run field in Pennsylvania produced oil from two shallow “pay sands,” both at depths of less than 1,400 feet. It was part of a series of other early important discoveries.

Late 18th-century Oil Well Supply Company illustration of pumping system using rods, cables, and an eccentric wheel.
In 1881, the Bradford field alone accounted for 83 percent of all the oil produced in the United States (see Mrs. Alford’s Nitro Factory). In 2004, new technologies began producing natural gas from a far deeper formation, the Marcellus Shale.
Oil production from some of the earliest shallow Pennsylvania wells declined to only about half a barrel of oil a day, but some continued pumping into 1960. On the West Coast, a 1913 central pumping unit produced from California’s largest oilfield three decades longer.
Midway-Sunset Jack Plant
On June 9, 2023, the National Park Service added the Midway-Sunset Jack Plant to the National Register of Historic Places — thanks to Mark Smith, who submitted the application to preserve the facility. Installed by the Engineers Oil Company in 1913, the Kern County jack plant pumped oil until 1990.

In operation until 1990, California’s Midway-Sunset Jack Plant used eccentric-wheel technologies from the late 19th century. The Kern County plant pumped more than 1.5 million barrels of oil. Photos courtesy John Harte. Illustration courtesy San Joaquin Geological Society.
“The Midway-Sunset Jack Plant is an extremely rare example of central power and ‘jack-line’ oil pumping technology on its original site and housed in its original building,” Smith noted in his 45-page draft application to the State Historical Resources Commission. “Its design and operational history reflect significant advancements in oil extraction technology.”
According to company records, the jack plant’s slowly rotating eccentric wheels produced 1.5 million barrels of oil during its lifetime. The end came when the bearing of the vertical shaft became worn, causing the shaft to wobble. The wobble of the eccentric gears made the pumping of the wells out of balance.
Pumping Multiple Wells
As the number of oil wells grew in the early days of America’s petroleum industry in Pennsylvania, simple water-well pumping technologies began to be replaced with steam-driven walking-beam pumping systems.
At first, each well had an engine house where a steam engine raised and lowered one end of a sturdy wooden beam, which pivoted on the cable-tool well’s “Samson Post.” The walking beam’s other end cranked a long string of sucker rods up and down to pump oil to the surface.

America’s oilfield technologies advanced in 1875 with this “Improvement In Means For Pumping Wells” invented in Pennsylvania.
Recognizing that pumping multiple wells with a single steam engine would boost efficiency, on April 20, 1875, Albert Nickerson and Levi Streeter of Venango County, Pennsylvania, patented their “Improvement in Means for Pumping Wells.”
Their system was the forerunner of wooden or iron rod jerk line systems for centrally powered oil production. This technology, eventually replaced by counter-balanced pumping units, will operate well into the 20th century – and remain an icon of early oilfield production.
“By an examination of the drawing it will be seen that the walking beam to well No. 1 is lifting or raising fluid from the well. Well No. 3 is also lifting, while at the same time wells 2 and 4 are moving in an opposite direction, or plunging, and vice versa,” the inventors explained in their patent application (No. 162,406).
Central Power Units
“Heretofore it has been necessary to have a separate engine for each well, although often several such engines are supplied with steam from the same boiler,” noted Nickerson and Streeter.
“The object of our invention is to enable the pumping of two or more wells with one engine…By it the walking beams of the different wells are made to move in different directions at the same time, thereby counterbalancing each other, and equalizing the strain upon the engine.”

An Allegheny National Forest Oil Heritage Series illustration of an oilfield “jack plant” in McKean County, Pennsylvania.
Steam initially drove many of these central power units, but others were converted to burn natural gas or casing-head gas at the wellhead – often using single-cylinder horizontal engines. Examples of the engines, popularly called “one lungers” by oilfield workers, have been collected and restored (see Coolspring Power Museum).

Many widely used techniques of drilling and pumping oil were developed to recover the high-quality “Pennsylvania Grade” oil. Image courtesy Library of Congress.
The heavy and powerful engine — started by kicking down on one of the iron spokes — transferred power to rotate an eccentric wheel, which alternately pushed and pulled on a system of rods linked to pump jacks at distant oil wells.
Pump Jacks
“Transmitting power hundreds of yards, over and around obstacles, etc., to numerous pump jacks required an ingenious system of reciprocating rods or cables called Central Power and jerker lines,” explains documentation from an Allegheny National Forest Oil Heritage Series.
The series documentation includes an early illustration of an oilfield “jack plant” in McKean County, Pennsylvania. The long rod lines were also called shackle lines or jack lines.

A single engine with eccentric wheel connecting rod lines could economically pump oil using Oil Well Supply Company’s “Simplex Pumping Jacks.”
Around 1913, with electricity not readily available, the Simplex Pumping Jack became a popular offering from Oil Well Supply Company of Oil City, Pennsylvania. The simple and effective technology could often be found at the very end of long jerk lines.
A central power unit could connect and run several of these dispersed Simplex pumps. Those equipped with a double eccentric wheel could power twice as many.
Roger Riddle, a retired field guide for the West Virginia Oil & Gas Museum in Parkersburg, grew up around central power units and recalls the rhythmic clanking of rod lines.

Riddle guided visitors through dense nearby woods where remnants of the elaborate systems rust. The heavy equipment once “pumped with just these steel rods, just dangling through the woods,” he said. “You could hear them banging along – it was really something to see those work. The cost of pumping wells was pretty cheap.”
The heyday of central power units passed when electrification arrived, nonetheless, a few such systems remain in use today. Learn more about the evolution of petroleum production methods, the first counter-balanced “Nodding Donkeys” in All Pumped Up – Oilfield Technology.
______________________
Recommended Reading: Drilling Technology in Nontechnical Language
(2012); Trek of the Oil Finders: A History of Exploration for Petroleum (1975). Your Amazon purchase benefits the American Oil & Gas Historical Society. As an Amazon Associate, AOGHS earns a commission from qualifying purchases.
_______________________
The American Oil & Gas Historical Society (AOGHS) preserves U.S. petroleum history. Please become an AOGHS annual supporter and help maintain this energy education website and expand historical research. For more information, contact bawells@aoghs.org. Copyright © 2025 Bruce A. Wells. All rights reserved.
Citation Information: Article Title: “Eccentric Wheels and Jerk Lines.” Authors: B.A. Wells and K.L. Wells. Website Name: American Oil & Gas Historical Society. URL: https://aoghs.org/technology/jerk-lines-eccentric-wheels. Last Updated: June 15, 2025. Original Published Date: November 20, 2017.