Inventing the Electric Submersible Pump

Armais Arutunoff manufactures efficient down-hole centrifugal pump, founds Reda.

 

Today’s petroleum industry owes a lot to Armais Sergeevich Arutunoff, son of an Armenian soap maker. 

With the help of a prominent Oklahoma oil company president, Arutunoff built the first practical electric submersible pumps (ESPs). His revolutionary concept would enhanced oil production in wells throughout the world.

A 1936 Tulsa World article described his downhole pump as “An electric motor with the proportions of a slim fence post which stands on its head at the bottom of a well and kicks oil to the surface with its feet.”

A 1951 "submergible" Reda Pump advertisement.

Armais Arutunoff will obtain 90 patents. Above, a 1934, patent for an improved well pump and electric cable. At right, a 1951 “submergible” Reda Pump advertisement.

By 1938, an estimated two percent of all the oil produced in the United States with artificial lift, was lifted by an Arutunoff pump.

According to an October 2014 article in the Journal of Petroleum Technology, the first patent for an oil-related electric pump was issued in 1894 to Harry Pickett. His invention used a downhole rotary electric motor with “a Yankee screwdriver device to drive a plunger pump.”

Armais Arutunoff, inventor of the modern electric submersible pump.

Armais Arutunoff, inventor of the modern electric submersible pump.

More than two decades later, Robert Newcomb received a 1918 patent for his “electro-magnetic engine” driving a reciprocating plunger pump.

“Heretofore, in very deep wells the rod that is connected to the piston, and generally known as the ‘sucker’ rod, very often breaks on account of its great length and strains imposed thereon in operating the piston,” noted Newcomb in his patent application.

Although several patents followed those of Picket and Newcomb, the Journal reports, “it was not until 1926 that the first patent for a commercial, operatable ESP was issued – to ESP pioneer Armais Arutunoff. The cable used to supply power to the bottomhole unit was also invented by Arutunoff.”

Russian Electrical Dynamo of Arutunoff (Reda)

Arutunoff built his first ESP in 1916 in Germany, according to the Oklahoma Historical Society. “Suspended by steel cables, it was dropped down the well casing into oil or water and turned on, creating a suction that would lift the liquid to the surface formation through pipes,” reported OHS historian Dianna Everett.

After immigrating to the United States in 1923, in California Arutunoff could not find financial support for manufacturing his pump design. He moved to Bartlesville, Oklahoma, in 1928 at the urging of a new friend – Frank Phillips, head of Phillips Petroleum Company.

“With Phillips’s backing, he refined his pump for use in oil wells and first successfully demonstrated it in a well in Kansas,” noted Everett. The device was manufactured by a small company that soon became Reda Pump.

The name Reda – Russian Electrical Dynamo of Arutunoff – was the cable address of the company that Arutunoff originally started in Germany. The inventor would move his family into a Bartlesville home just across the street from Frank Phillips’ mansion.

REDA Pump founder Armais Arutunoff lived in this house in Bartlesville, Oka..

The founder and president of the Reda Pump Company, Armais Arutunoff, once lived in this house at 1200 Cherokee Avenue – across from Phillips Petroleum founder Frank Phillips, whose home today is a Bartlesville, Oklahoma, museum. Photo courtesy Kathryn Mann, Only in Bartlesville.

A holder of more than 90 patents in the United States, Arutunoff was inducted into the Oklahoma Hall of Fame in 1974. “Try as I may, I cannot perform services of such value to repay this wonderful country for granting me sanctuary and the blessings of freedom and citizenship,” Arutunoff said at the time.

A modern ESP artificial lift diagram courtesy Schlumberger.

A modern ESP applies artificial lift by spinning the impellers on the pump shaft, putting pressure on the surrounding fluids and forcing them to the surface. It can lift more than 25,000 barrels of fluids per day. Courtesy Schlumberger.

Arutunoff died in February 1978 in Bartlesville. At the end of the twentieth century, Reda was the world’s largest manufacturer of ESP systems. It is now part of Schlumberger.

Son of a Soap Maker

Armais Sergeevich Arutunoff was born to Armenian parents in Tiflis, part of the Russian Empire, on June 21, 1893. His home town, in the Caucasus Mountains between the Caspian and Black Sea, dated back to the 5th Century.

According to an online electrical submersible pump history at ESP Pump, his father was a soap manufacturer and his grandfather a fur trader. In his youth, Arutunoff lived in Erivan (now Yerevan) the capital of Armenia.

The ESP Pump website, which includes a profile of his extensive scientific career, described how Arutunoff’s research convinced him that electrical transmission of power could be efficiently applied to oil drilling and improve the antiquated methods he saw in use in the early 1900s in Russia.

“To do this, a small, yet high horsepower electric motor was needed,” ESP Pump explained. “The limitation imposed by available casing sizes made it necessary that the motor be relatively small.”

However, a motor of small diameter would necessarily be too low in horsepower. “Such a motor would be inadequate for the job he had in mind so he studied the fundamental laws of electricity to find the basis for the answer to the question of how to build a higher horsepower motor exceedingly small in diameter,” according to ESP Power.

By 1916, Arutunoff was designing a centrifugal pump to be coupled to the motor for de-watering mines and ships. To develop enough power it was necessary the motor run at very high speeds. He successfully designed a centrifugal pump, small in diameter and with stages to achieve high discharge pressure.

“In his design, the motor was ingeniously installed below the pump to cool the motor with flow moving up the oil well casing, and the entire unit was suspended in the well on the discharge pipe,” ESP Pump noted. “The motor, sealed from the well fluid, operated at high speed in an oil bath.”

An Upside Down Well Motor

Although Arutunoff built the first centrifugal pump while living in Germany, he built the first submersible pump and motor in the United States while living in Los Angeles.

“Before coming to the U.S. he had formed a small company of his own, called Reda, to manufacture his idea for electric submersible motors,” noted ESP Pump. “He later settled in Germany and then came with his wife and one-year-old daughter to the United States to settle in Michigan, then Los Angeles.”

However, after emigrating to America in 1923, Arutunoff could not find financial support for his down-hole production technology. Everyone he approached turned him down, saying the unit was “impossible under the laws of electronics.” No one would consider his inventions until friends at Phillips Petroleum Company in Bartlesville encouraged him to form his own company there.

The Reda Company manufacturing plant in Bartlesville , Okla.

Arutunoff’s manufacturing plant in Bartlesville spread over nine acres, employing hundreds during the Great Depression.

In 1928 Arutunoff moved to Bartlesville, where formed Bart Manufacturing Company, which changed its same to the Reda Pump Company in 1930. He soon demonstrated a working model of an oilfield electric submersible pump.

One of his pump-and-motor devices was installed in an oil well in the El Dorado field near Burns, Kansas – the first equipment of its kinds to be used in a well. One reporter telegraphed his editor, “Please rush good pictures showing oil well motors that are upside down.”

By end of the 1930s Arutunoff’s company held dozens of patents for industrial equipment, leading to decades of success and even more patents. His “Electrodrill” aided scientists in penetrating the Antarctic ice cap for the first time in 1967. “Arutunoff’s ESP oilfield technology quickly had a significant impact on the oil business,” concluded the ESP Pump article. “His pump was crucial to the successful production over the years of hundreds of thousands of oil wells.”

Also see All Pumped Up – Oilfield Technology and Conoco & Phillips Petroleum Museums.

_______________________________

The American Oil & Gas Historical Society preserves U.S. petroleum history. Become an AOGHS supporting member and help maintain this energy education website and expand historical research. For more information, contact bawells@aoghs.org. © 2021 Bruce A. Wells. All rights reserved.

Citation Information – Article Title: “Inventing the Electric Submersible Pump.” Author: Aoghs.org Editors. Website Name: American Oil & Gas Historical Society. URL: https://aoghs.org/technology/electric-submersible-pump-inventor. Last Updated: June 10, 2021. Original Published Date: April 29, 2014.

 

Lane-Wells 100,000th Perforation

Established in 1932, the Lane-Wells oilfield service company created powerful perforating guns. 

 

Fifteen years after its first oil well perforation job, Lane-Wells Company returned to the same well near Montebello, California, to perform its 100,000th perforation. The publicity event of June 18, 1948, was a return to Union Oil Company’s La Merced No. 17 well.

 The gathering of executives at the historic well celebrated a leap in oilfield production technology. Their combined inventiveness had accomplished much a short time, “so it was a colorful ceremony,” according to a trade magazine.

Officials from both companies and invited guests gathered to witness the repeat performance of the company’s early perforating technology, noted Petroleum Engineer in its July 1948 issue. Among them were “several well-known oilmen who had also been present on the first occasion.”

Lane-Wells

As production technologies evolved after World War II, Lane-Wells developed a downhole gun with the explosive energy to cut through casing. Above, one of the articles preserved in a family scrapbook, courtesy Connie Jones Pillsbury, Atascadero, California.

Walter Wells, chairman of the board for Lane-Wells, was present for both events. The article reported he was more anxious at the first, which had been an experiment to test his company’s new perforating gun. In 1930, Wells and another enterprising oilfield tool salesman, Bill Lane, came up with a practical  way of using guns downhole. They envisioned a tool which would shoot steel bullets through casing and into the formation.

The two men created a multiple-shot perforator that fired bullets individually by electrical detonation of the powder charges. After many tests, success came at the Union Oil Company La Merced well. As explained further in Downhole Bazooka, by late 1935 Lane-Wells had established a small fleet of trucks as the company grew into a leading provider of well-perforation services.

“Bill Lane and Walt Wells worked long hours at a time, establishing their perforating gun business,” explained Susan Wells in a 2007 book. The men designed tools that would better help the oil industry during the Great Depression, she noted. “It was a period of high drilling costs, and the demand for oil was on the rise. Making this scenario worse was the fact that the cost of oil was relatively low.”

What was needed was a high-powered gun for breaking through casing, cement and into formations. An oilfield worker, Sidney Mims, had patented a similar technical tool for this purpose, but could not get it to work as well as it could. Lane and Wells purchased the patent and refined the gun.

Book cover featuring 75th anniversary of Baker Atlas oil well service company.

Lane-Wells became Baker Atlas, which celebrated its 75 anniversary in 2007, and today is a division of Baker-Hughes

Established in Los Angeles in 1932, the oilfield service company developed a remotely controlled 128-shot gun perforator. “Lane and Wells publicly used the reengineered shotgun perforator they bought from Mims on Union Oil’s oil well La Merced No. 17. There wasn’t any production from this oil well until the shotgun perforator was used, but when used, the well produced more oil than ever before,” she noted in a 2007 book celebrating the 75th anniversary of Baker-Atlas.

The successful application attracted many other oil companies to Lane-Wells, which decided to conduct its 100,000th perforation almost 16 years later at the very same California oil well. The continued success led to new partnerships beginning in the 1950s.

AOGHS membership ad for 2020

A Lane-Wells merger with Dresser Industries was finalized in March 1956, and another corporate merger arrived in 1968 with Pan Geo Atlas Corporation, forming the service industry giant Dresser Atlas.

A 1987 joint venture with Litton Industries led to Western Atlas International, which became an independent company before becoming a division of Baker-Hughes in 1998 (Baker Atlas) providing well logging and perforating services. Dresser merged with Halliburton in 1998.

Preserving Petroleum History

Connie Jones Pillsbury of Atascadero, California, possesses the original guest book (press-clippings scrapbook) from the “Lane-Wells 100,000th Gun Perforating Job” of June 18, 1948, at the Union Oil Company La Merced No. 17 well at Montebello, California. She seeks a good, museum home for her rare oil patch artifact, which comes from an event “attended by most of the top players in the oil industry in Los Angeles during this era.”

Pillsbury’s book has attendees’ signatures, photographs, and articles about the event (from TIME, The Oil and Gas Journal, Fortnight, Oil Reporter, Drilling, The Petroleum Engineer, Oil, Petroleum World, California Oil World, Lane-Wells Magazine, the L.A. Examiner, L.A. Daily News and L.A. Times).

The children of Dale G. Jones and the grandson of Walter T. Wells have contacted petroleum museums for help to preserve family records (see Oil & Gas Families).

_______________________

Recommended Reading:  75 Years Young…BAKER-ATLAS The Future has Never Looked Brighter (2007); Wireline: A History of the Well Logging and Perforating Business in the Oil Fields (1990). Your Amazon purchase benefits the American Oil & Gas Historical Society. As an Amazon Associate, AOGHS earns a commission from qualifying purchases.

_______________________

The American Oil & Gas Historical Society preserves U.S. petroleum history. Become an AOGHS supporting member and help maintain this energy education website and expand historical research. For more information, contact bawells@aoghs.org. © 2021 Bruce A. Wells. All rights reserved.

Citation Information – Article Title: “Lane-Wells 100,000th Perforation” Authors: B.A. Wells and K.L. Wells. Website Name: American Oil & Gas Historical Society. URL: https://aoghs.org/technology/oil-well-perforation-company. Last Updated: June 9, 2021. Original Published Date: June 30, 2017.

 

Illuminating Gaslight

First U.S. gas street lamps illuminated Baltimore in 1817 after a dazzling “gems of light” at first art museum.

 

America’s first public street lamp (fueled by manufactured gas) illuminated Market Street in Baltimore, Maryland, in early 1817. The Gas Light Company of Baltimore thus became the first U.S. commercial gas lighting company by distilling tar and wood to manufacture its gas.

Gas light plaque at original Baltimore street lamp replica.

A replica of the first Baltimore gas street light. Photo courtesy BG&E.

A small, brass monument to the company and its street lamp stands at the corner of North Holliday Street and East Baltimore Street (once Market and Lemon streets). Dedicated by the city’s utility company in 1991 and fueled by natural gas, the elegant lamp is a 175th anniversary replica of the original 1817 design.

In 1816, well-known artist, inventor, and museum founder Rembrandt Peale made headlines by illuminating a large room in his Holliday Street art and natural history museum with artificial gas. This first demonstration dazzled local businessmen and socialites gathered there with a “ring beset with gems of light.”

1921 painting of Rembrandt Peale as he lighted gas light in his museum.

A 1921 painting dramatized the moment when Rembrandt Peale demonstrated his Baltimore museum’s manufactured gas-fueled “gems of light.” Photo courtesy BG&E.

“Taking after a natural history museum that his father, Charles Wilson Peale, started in Philadelphia in 1786, Rembrandt Peale displayed collections of fossils and other specimens, as well as portraits of many of the country’s founding fathers that his family had painted,” noted a historian for Explore Baltimore Heritage. Peale hoped his demonstration would attract investors (perhaps like moths to a flame).

“During a candlelit period in American history the forward-thinking Peale aimed to form a business around his gas light innovations, the exhibition targeting potential investors,” added another historian at the utility Baltimore Gas & Electric.

Ad for Peale Museum illumination by gas demonstration.

An 1816 advertisement for the Peale Museum illumination. Photo courtesy BG&E.

The manufactured gas gamble worked, and several financiers aligned with Peale, forming The Gas Light Company of Baltimore, BG&E’s precursor. “Less than a year later, on February 7, 1817, the first public gas street lamp was lit in a ceremony one block south of City Hall,” noted BG&E.

The impressed city council speedily approved Peale’s plan to light more of the city’s streets. BG&E also credits Baltimore inventor Samuel Hill for establishing America’s first gas meter manufacturing company in 1832. Two years later the first meters were installed. The company petitioned the city to begin laying underground pipelines in 1851.

Exterior of the Peale museum in Baltimore, Maryland.

“Peale’s Baltimore Museum and Gallery of Paintings” opened in 1814 in a building designed by architect Robert Carey Long. Photo courtesy Baltimore Heritage.

Over coming decades, two miles of gas main would be completed under Baltimore streets and the company showed its first profit. Metering replaced flat-rate billing, helping residents afford lighting their homes with gas. By 1855, a new gas manufacturing plant was constructed to distill gas from coal – an improvement over the former “gasification” of tar or wood.  Manufacturing gas from coal had earlier proved successful in Philadelphia.

Following Baltimore, public use of manufactured gas lighting began in New York City in 1823 when the New York Gas Company received a charter from the state legislature to light to parts of Manhattan. Consolidated Edison, Inc. – known as “Con Edison” or “Con Ed” – was created in 1884, when six New York City gas-light companies merged.

Coal Gas brightens Philadelphia

Forty-six lights burning manufactured “coal gas” were lit on February 8, 1836, along Philadelphia’s Second Street by employees of the newly formed Philadelphia Gas Works. As Philadelphia became the nation’s center for finance and industry, the municipally owned gas distribution company began a series of  gas-manufacturing innovations.

By 1856, Philadelphia Gas completed construction of a gas tank at the company’s Point Breeze Plant in South Philadelphia. At the time it was the largest in the nation with a total holding capacity of 1.8 million cubic feet.

Tank and buildings of illuminating gas light manufacturing plant 1856

A natural gas storage facility at Point Breeze in South Philadelphia, circa 1856. Photograph courtesy Philadelphia Gas Works.

When the American Centennial Exposition of 1876 displayed the wonders of the age in agriculture, horticulture and machinery, gas cooking was showcased as a novelty. Sixty miles of pipe brought manufactured gas to the exhibition’s lamps.

Natural Gas Lights

According to most oil patch historians, the earliest commercial use of natural gas (not manufactured gas) took place in Fredonia, New York, about two years before the 1859 first U.S. oil well in Pennsylvania. Natural gas was piped to several downtown Fredonia stores, shops, and a mill from a natural gas well drilled in a nearby creek by William Hart.

AOGHS membership ad for 2020

It too three wells for Hart, considered by many as the father of the natural gas industry, to produce commercial amounts of natural gas. “He left a broken drill in one shallow hole and abandoned a second site at a depth of forty feet because of the small volume of gas found,” noted historian Lois Barris in her history of the nation’s first natural gas company, the Fredonia Gas Light and Water Works Company, which incorporated in 1857.

 

According to Barris, Hart made three attempts at drilling. “In his third attempt, Mr. Hart found a good flow of gas at seventy feet,” she explained. “He then constructed a crude gasometer, covering it with a rough shed and proceeded to pipe and market the first natural gas sold in this country.”

Considered America’s first natural gas company, Fredonia Gas Light and Water Works Company incorporated in New York 

By 2005, more than U.S. 900 public natural gas systems were serving more than 70 million customers, and the Philadelphia Gas Works had become the largest of them. Learn more about the early natural gas industry in Natural Gas is King in Pittsburgh and Indiana Natural Gas Boom. 

_______________________

Recommended Reading:  In Pursuit of Fame: Rembrandt Peale, 1778-1860 (1993); The Extraction State, A History of Natural Gas in America (2021). Your Amazon purchase benefits the American Oil & Gas Historical Society. As an Amazon Associate, AOGHS earns a commission from qualifying purchases.

_______________________

The American Oil & Gas Historical Society preserves U.S. petroleum history. Become an AOGHS supporting member and help maintain this energy education website and expand historical research. For more information, contact bawells@aoghs.org. Copyright © 2021 Bruce A. Wells. All rights reserved.

Citation Information – Article Title: “Illuminating Gaslight.” Authors: B.A. Wells and K.L. Wells. Website Name: American Oil & Gas Historical Society. URL: https://aoghs.org/technology/manufactured-gas. Last Updated: June 1, 2021. Original Published Date: January 30, 2016.

 

Technology and the “Conroe Crater”

A 1933 Texas well disaster would lead to advancements in directional drilling.

 

A Great Depression-era disaster in a giant oilfield near Conroe, Texas, brought together the inventor of a revolutionary portable drilling rig and the father of directional drilling. George Failing and H. John Eastman employed new technologies that allowed “the bit burrowing into the ground at strange angles.”

Although the Conroe well’s producing sands proved to be dangerously gas-charged, shallow and unstable, the oilfield – the third largest in the United States at the time — soon had 60 successful wells producing more than 65,000 of barrels of oil a day. The region north of Houston boomed as the Great Depression worsened. Disaster came in January 1933 when one of the wells blew out and erupted into flame. The runaway well cratered – completely swallowing nearby drilling rigs. (more…)

Project Gasbuggy tests Nuclear “Fracking”

Government scientists blasted natural gas wells trying to increase production.

 

Project Gasbuggy was the first in a series of Atomic Energy Commission downhole nuclear detonations to release natural gas trapped in shale. This was “fracking” late 1960s style.

In December 1967, government scientists — exploring the peacetime use of controlled atomic explosions — detonated Gasbuggy, a 29-kiloton nuclear device they had lowered into an experimental well in rural New Mexico. The Hiroshima bomb of 1945 was about 15 kilotons.

project gasbuggy nuclear gas well test.

Scientists lowered a 13-foot by 18-inches diameter nuclear device into a New Mexico gas well. The experimental 29-kiloton Project Gasbuggy bomb was detonated at a depth of 4,240 feet. Los Alamos Lab photo.

Project Gasbuggy’s team included experts from the Atomic Energy Commission, the U.S. Bureau of Mines and El Paso Natural Gas Company. They sought a new, powerful method for fracturing petroleum-bearing formations. Near three low-production natural gas wells, the team drilled to a depth of 4,240 feet — and lowered a 13-foot-long by 18-inch-wide nuclear device into the borehole.

Plowshare Program: Peaceful Nukes

The 1967 experimental explosion in New Mexico was part of a wider set of experiments known as Plowshare, a program established by the Atomic Energy Commission in 1957 to explore the constructive use of nuclear explosive devices.

“The reasoning was that the relatively inexpensive energy available from nuclear explosions could prove useful for a wide variety of peaceful purposes,” noted a report later prepared for the U.S. Department of Energy. From 1961 to 1973, researchers carried out dozens of separate experiments under the Plowshare program — setting off 29 nuclear detonations.

Most of the experiments focused on creating craters and canals. Among other goals, it was hoped the Panama Canal could be inexpensively widened. “In the end, although less dramatic than nuclear excavation, the most promising use for nuclear explosions proved to be for stimulation of natural gas production,” explains the September 2011 government report.

project gasbuggy geology diagram

The 1967 nuclear detonation produced 295 million cubic feet of natural gas — and deadly Tritium radiation.

Tests, mostly conducted in Nevada, also took place in the petroleum fields of New Mexico and Colorado. Project Gasbuggy was the first of three nuclear fracturing experiments that focused on stimulating natural gas production. Two later tests took place in Colorado.

AOGHS membership ad for 2020

Atomic Energy Commission scientists worked with experts from the Astral Oil Company of Houston, with engineering support from CER Geonuclear Corporation of Las Vegas. The experimental wells, which required custom drill bits to meet the hole diameter and narrow hole deviation requirements, were drilled by Denver-based Signal Drilling Company or its affiliate, Superior Drilling Company.

Project Rulison was the second of the three nuclear gas well stimulation projects.

In 1969, Project Rulison — at a site near Rulison, Colorado — detonated a 43-kiloton nuclear device almost 8,500 feet underground to produce commercially viable amounts of natural gas. A few years later, project Rio Blanco, northwest of Rifle, Colorado, was designed to increase natural gas production from low-permeability sandstone.

Project Gasbuggy drilling rigs at well site in Colorado.

Gasbuggy: “Site of the first United States underground nuclear experiment for the stimulation of low-productivity gas reservoirs.” Photo Courtesy DOE.

The May 1973 Rio Blanco test consisted of the nearly simultaneous detonation of three 33-kiloton devices in a single well, according to the Office of Environmental Management. The explosions occurred at depths of 5,838, 6,230, and 6,689 feet below ground level. It would prove to be the last experiment of the Plowshare program.

Although a 50-kiloton nuclear explosion to fracture deep oil shale deposits — Project Bronco — was proposed, it never took place. Growing knowledge (and concern) about radioactivity ended these tests for the peaceful use of nuclear explosions. The Plowshare program was canceled in 1975. After an examination of all the nuclear test projects, the U.S. Department of Energy September 2011 reported:

By 1974, approximately 82 million dollars had been invested in the nuclear gas stimulation technology program (i.e., nuclear tests Gasbuggy, Rulison, and Rio Blanco). It was estimated that even after 25 years of gas production of all the natural gas deemed recoverable, that only 15 to 40 percent of the investment could be recovered. At the same time, alternative, non-nuclear technologies were being developed, such as hydrofracturing.

DOE concluded, Consequently, under the pressure of economic and environmental concerns, the Plowshare Program was discontinued at the end of FY 1975.

Project Gasbuggy: Nuclear Fracking

“There was no mushroom cloud, but on December 10, 1967, a nuclear bomb exploded less than 60 miles from Farmington,” explained historian Wade Nelson in an article written three decades later, “Nuclear explosion shook Farmington.”

Project gasbuggy government fracturing illustration of natural gas well.

Government scientists believed a nuclear device would provide “a bigger bang for the buck than nitroglycerin” for fracturing dense shales and releasing natural gas. Illustration courtesy Los Alamos Lab.

The 4,042-foot-deep detonation created a molten glass-lined cavern about 160 feet in diameter and 333 feet tall. It collapsed within seconds. Subsequent measurements indicated fractures extended more than 200 feet in all directions — and significantly increased natural gas production.

A September 1967 Popular Mechanics article had described how nuclear explosives could improve previous fracturing technologies, including gunpowder, dynamite, TNT — and fractures “made by forcing down liquids at high pressure.” (Erle Halliburton had tested hydraulic fracturing in the late 1940s.)

Popular Mechanics 1967  illustration of nuclear explosive creating fractures in gas wells.

A 1967 illustration in Popular Mechanics magazine showed how a nuclear explosive would improve earlier technologies by creating bigger fractures and a “huge cavity that will serve as a reservoir for the natural gas.”

Scientists predicted that nuclear explosives would create more and bigger fractures “and hollow out a huge cavity that will serve as a reservoir for the natural gas” released from the fractures.

“Geologists had discovered years before that setting off explosives at the bottom of a well would shatter the surrounding rock and could stimulate the flow of oil and gas,” Nelson explained. “It was believed a nuclear device would simply provide a bigger bang for the buck than nitroglycerin, up to 3,500 quarts of which would be used in a single shot.”

project gasbuggy carson national forest

The underground detonation was part of a bigger program begun in the late 1950s to explore peaceful uses of nuclear explosions.

“Today, all that remains at the site is a plaque warning against excavation and perhaps a trace of tritium in your milk,” Nelson added in his 1999 article. He quoted James Holcomb, the site foreman for El Paso Natural Gas, who saw a pair of white vans that delivered pieces of the disassembled nuclear bomb.

“They put the pieces inside this lead box, this big lead box…I (had) shot a lot of wells with nitroglycerin and I thought, ‘That’s not going to do anything,” reported Holcomb. A series of three production tests, each lasting 30 days, was completed during the first half of 1969. Government records indicated the Gasbuggy well produced 295 million cubic feet of natural gas.

“Nuclear Energy: Good Start for Gasbuggy,” proclaimed the December 22, 1967, TIME magazine. The Department of Energy, which had hoped for much higher production, determined that Tritium radiation contaminated the gas. It  flared — burned off — the gas during production tests that lasted until 1973. Tritium is a naturally occurring radioactive form of hydrogen. A 2012 the Nuclear Regulatory Commission report noted, “Tritium emits a weak form of radiation, a low-energy beta particle similar to an electron. The tritium radiation does not travel very far in air and cannot penetrate the skin.”

project gasbuggy marker

A plaque marks the site of Project Gasbuggy in the Carson National Forest, 90 miles northwest of Santa Fe, New Mexico.

According to Nelson, radioactive contamination from the flaring “was miniscule compared to the fallout produced by atmospheric weapons tests in the early 1960s.” From the well site, Holcomb called the test a success. “The well produced more gas in the year after the shot than it had in all of the seven years prior,” he said.

In 2008, the Energy Department’s Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the Gasbuggy site. A marker placed at the Gasbuggy site by the Department of Energy in November 1978 reads:

Site of the first United States underground nuclear experiment for the stimulation of low-productivity gas reservoirs. A 29 kiloton nuclear explosive was detonated at a depth of 4227 feet below this surface location on December 10, 1967. No excavation, drilling, and/or removal of materials to a true vertical depth of 1500 feet is permitted within a radius of 100 feet of this surface location. Nor any similar excavation, drilling, and/or removal of subsurface materials between the true vertical depth of 1500 feet to 4500 feet is permitted within a 600 foot radius of t 29 n. R 4 w. New Mexico principal meridian, Rio Arriba County, New Mexico without U.S. Government permission.

Today, hydraulic fracturing — pumping a mixture of fluid and sand down a well at extremely high pressure — stimulates production of natural gas wells. Learn more in Shooters — A “Fracking” History. 

Parker Drilling Rig No. 114

In 1969, Parker Drilling Company signed a contract with the U.S. Atomic Energy Commission to drill a series of holes up to 120 inches in diameter and 6,500 feet in depth in Alaska and Nevada for additional nuclear bomb tests. Parker Drilling’s Rig No. 114 was one of three special rigs built to drill the wells.

oil museums Parker rig at Elk City

Parker Drilling Rig No. 114 was among those used to drill wells for nuclear detonations and later modified to drill conventual, very deep wells. Since 1991, the 17-story rig has welcomed visitors to Elk City, Oklahoma, next to the shuttered Anadarko Museum of Natural History. Photo by Bruce Wells.

Founded in Tulsa in 1934 by Gifford C. Parker, by the 1960s Parker Drilling had set numerous world records for deep and extended-reach drilling. According to the Baker Library at the Harvard Business School, the company “created its own niche by developing new deep-drilling technology that has since become the industry standard.”

Following completion of the nuclear-test wells, Parker Drilling modified Rig No. 114 and its two sister rigs to drill conventual wells at record-breaking depths. After retiring Rig No. 114 from service, Parker Drilling loaned the giant to Elk City, Oklahoma, as an energy education exhibit next to the Anadarko Museum of Natural History. Since 1991 the has welcomed visitors to traveling on Route 66 or I-40 and the now closed oil museum.

Learn more about petroleum industry technology for deep drilling in Anadarko Basin in Depth.

_______________________

Recommended Reading:  Atoms for Peace and War 1953-1961 (2017); Project Plowshare: The Peaceful Use of Nuclear Explosives in Cold War America (2012). Your Amazon purchase benefits the American Oil & Gas Historical Society. As an Amazon Associate, AOGHS earns a commission from qualifying purchases.

_______________________

The American Oil & Gas Historical Society preserves U.S. petroleum history. Become an AOGHS supporting member and help maintain this energy education website and expand historical research. For more information, contact bawells@aoghs.org. Copyright © 2021 Bruce A. Wells. All rights reserved.

Citation Information – Article Title: “Project Gasbuggy tests Nuclear “Fracking”.” Authors: B.A. Wells and K.L. Wells. Website Name: American Oil & Gas Historical Society. URL: https://aoghs.org/technology/project-gasbuggy. Last Updated: May 7, 2021. Original Published Date: December 10, 2013.

 

Yellow Dog – Oilfield Lantern

Patented two-wicked safety lamp prevented “destructive conflagrations” on oil derricks.

 

Oil patch lore says the yellow dog lantern was so named because its two burning wicks resembled a dog’s glowing eyes at night. Others believed the lamp projected a strange and eerie dog’s head shadow on the derrick floor.

Rare is the community oil and natural gas museum that doesn’t have a “yellow dog” in its collection. The two-wicked lamp is an oilfield icon. Some say the unusual spout design originated with whaling ships – but neither the Nantucket nor New Bedford whaling museums could find any such evidence.

yellow dog two wick lantern from 1877 US patent drawing

Originally patented in 1870, Jonathan Dillen’s lantern design was “especially adapted for use in the oil regions…where the explosion of a lamp is attended with great danger by causing destructive conflagration and consequent loss of life and property.”

Many railroad museums have collections of cast iron smudge pots, but nothing quite like the heavy, odd shaped, crude-oil burning lanterns once prevalent on petroleum fields from Pennsylvania to California.

Although many companies manufactured the iron or steel lamps, the yellow dog’s origins remain in the dark. Some historical references claim the lanterns were so named because their two burning wicks resembled a dog’s glowing eyes at night. Other oil patch lore says the lamps cast a dog’s head shadow on the derrick floor.

Inventor Jonathan Dillen of Petroleum Centre, Pennsylvania, was first to patent what became the “yellow dog” of the U.S. petroleum industry’s early years. The U.S. patent was awarded on May 3, 1870. Dillen’s lamp joined other safety innovations as drilling technologies evolved.

(more…)

Pin It on Pinterest